
A
ccording to ESRI’s John
Baleja, Steve Kopp, James
Neild, and Jason Willi-
son, the size of a raster
dataset when managed in

a spatial database is immaterial to the
performance of the applications manipu-
lating it. Specifically, “manipulating” in
this context means loading, managing,
visualizing (in two and three dimensions),
analyzing, and distributing data subsets.
ESRI reports that these functions apply to
raster datasets measuring 1 GB, 10 TB, 
or more.

But how big is big? When discussing
image size, it’s easy to forget what the
units really represent. We all know the
phrase, a picture tells a thousand words.
Measured in units of computer memory,
it’s actually possible to quantify that
phrase more precisely. A byte stores a 
single character, such as the letter “A.”
Based on an informal study of my local
newspaper, the average number of char-
acters per word is 5.5 (closer to five for
sports stories, closer to six for politics!).
One gigabyte is 1,073,741,824 bytes
(approximately 1 billion bytes). On aver-
age, then, a 1-GB image tells 195 million
words (1 GB divided by 5.5 bytes, or
characters, per word). Or, if the average
400-page hardcover novel contains
100,000 printed words, then that 1-GB
image tells 1,950 hardcover novels worth
of words. That’s a fair estimate of how
many hardcopy books the average person
might read in a lifetime.

If this sort of comparison begins to
communicate the vast size of today’s
imagery collections, next consider how
quickly they can be aggregated. For
instance, Baleja reported that, for a
demonstration at this summer’s ESRI
International User Conference, one per-
son loaded 4 TB of image data in one
week. A terabyte is 1,024 gigabytes — by
our little equivalence comparison, that’s
almost 2 million hardcover novels. So,
some solitary technician at ESRI coaxed a
single desktop computer into reading and
remembering the equivalent of 8 million
novels in just one week’s time.

Verbal comparisons, however, only go
so far. To get a better sense of size, why
not directly explore some of the imagery
collections now appearing online because
of the advances in raster storage and
retrieval technology. For instance, the
North Texas Council of Governments
Web site (www.dfwmaps.com) serves
imagery sharp enough to resolve swim-
ming pool diving boards, automobile
windshields, and pipe vents extruding
from the roofs of houses (see Figure 1a).
The amazing thing is not so much the fine
grain of the images, but how much fine-
grained imagery is packed into one com-
fortable collection. Zooming out from
raster-resolution scale to the limits of the
imagery’s extent puts its magnitude in
perspective (see Figures 1b, 1c, and 1d).

Partial Pyramiding
Supplying such a large collection of raster
data through the North Texas Council of
Governments’ single system is possible
because of advancements in technology
performance and management. But tech-
nologies for quickly extracting only the
requested extent and resolution raster-
data clip from a larger collection are by

now widespread. The real news is about
dataset size breakthroughs combined
with enhancements that simplify or speed
administration and analysis. One such
new ESRI arrival is partial pyramiding, a
technology that allows databases to
update only the changing areas of an
imagery collection in response to the
insertion of new imagery. For instance,
adding a new “patch” image to a larger
collection, like replacing one square of a
quilt, does not require reprocessing of the
whole pyramid structure.

To understand the enhancement
requires clarity on the base capability —
raster pyramiding. Raster pyramids are
multiple copies of an image dataset, but
with each copy saved at a different reso-
lution, from the original highest resolu-
tion to down-sampled low resolution.
This set of copies is the pyramid. If the
North Texas Council of Governments
dataset uses raster pyramids, then each of
the zooms in Figure 1 could be rendering
a different copy or level of the pyramid.
As users zoom out, they see resampled
copies of the same original raster data at
coarser spatial resolutions.

Pyramids improve overall performance
by generalizing away unnecessary detail
for a zoomed-out view before the request
ever arrives. Then, when a user does
zoom to the full data extent (as in Figure
1d) he or she sees the top of the pyramid
— a single, low-resolution image of the
whole raster collection. At tighter zoom
extents (as in Figure 1a), the database
clips the appropriate subset of the high-
resolution pyramid base imagery (or,
depending on technical implementation,
might extract a pre-existing tile by refer-
encing its indexed polygon footprint
against the rectangle of the view extent).
At all levels, though, the resampling is
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already done, so the viewer quickly
receives an image with appropriate detail
for the requested scale.

Clearly, end users benefit from pyra-
mids, but how do they impact data
administrators? When inserting imagery
into a database for the first time, the 
spatial data management software must
duplicate the whole collection at enough
resampled pyramid levels to perform well
at any zoom scale. The larger the collec-
tion, the longer this task takes. Before
partial pyramiding, the entire process had
to be repeated with any imagery update.
Now, rebuilding the pyramid takes less
time, especially if the update represents
only a small partial area of the imagery 
extent. So this technological advance 

is a time-saver feature for raster-collec-
tion administrators.

Analysis Without Paralysis
Raster data are not all images, of course.
Images, mosaics, snapshots, raster cata-
logs, and data organized by a regular grid
such as a digital elevation model (DEM)
or temperature grid all qualify as raster
data. And because of the recent increases
in performance, ESRI reports that even
very large raster datasets are now fully
supported by such standard tools as clip-
ping, reprojecting, mosaicking, warping,
georeferencing, calculating polynomial
transformations, and applying ESRI’s
extensions (3D Analyst, Spatial Analyst,
and ArcGlobe) for raster analysis. What

are the implications to application
design?

Large-performant raster data in com-
bination with these familiar raster analy-
sis tools encourage not just data storage
and access on local machines, but analy-
tical transformation and access via Web
services. For example, the U.S. Geological
Survey (USGS) has distributed DEM data
from a public Internet site for years. Cov-
erage was nationwide, but with data bro-
ken into quads or counties and stored as
files. More recently, USGS began provid-
ing seamless national coverage of DEM
data stored in an ESRI SDE-based data-
base and available on the public Internet
(http://seamless.usgs.gov). This shift in
storage from multiple files to a single

Figures 1a, 1b, 1c, and 1d. Views of the North Texas Council of Governments Web site when zooming from backyard scale (1a) to regional scale (1d) 
illustrate the large coverage of this fine-grained raster dataset.
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repository means that analysis can also
be seamless. In other words, USGS can
now provide Web services not just to dis-
play raw DEM data, but also to render
them seamlessly as a slope or aspect map.
And the area for rendering can bridge
quad map edges or county boundaries.

For example, the seamless USGS site
already provides a simple online analysis
service: the elevation profile tool. This
tool allows users to create a line segment
by clicking points on a map and then
graphing that transect’s elevations based
on any one of a long list of seamless
DEM datasets. To test the tool, I began a
transect in a familiar baseball diamond in
Berkeley, continued across a steep ridge
bordering the ball field, and ended in a
valley on the other side of the ridge (see
Figure 2a). The tool accurately graphed my
transect from left to right — a flat field,
then nearly a vertical cliff face, then step-
ping more gradually down into the valley

(see Figure 2b). Convinced that the tool
worked on a small area, I zoomed nation-
wide and drew a transect line from the
Pacific to the Atlantic Ocean (see Figure 2c).
The collection is truly seamless and per-
formant — the site generated a graph in
the same amount of time as the first test,
returning a topographic profile spanning
multiple states, dozens of counties, and
who-knows-how-many quad sheets (see
Figure 2d).

Other organizations with similar data-
base-centric raster analysis, distribution,
and Internet visualization approaches
include the North Carolina Floodplains
site (www.ncfloodmaps.com), the
Louisiana Department of Environmental
Quality (http://map.deq.state.la.us), and
Earthsat (www.earthsat.com).

Faster Raster
Raster analysis requires efficient number
crunching. For ESRI’s implementation,

database features and ArcSDE enable
such performant number crunching of
large raster collections. Analytical opera-
tions isolate a subset of the larger collec-
tion using database indexing techniques
to speed subset extraction. A typical pro-
cessing flow might begin when an analy-
sis tool, such as an aspect map request,
pulls a raster subset out of the database,
performs the aspect operation, delivers
the results to the user, and then, possibly,
puts the result back into the database for
later retrieval without the need for a sec-
ond calculation.

In addition to database indexes,
software, such as ESRI’s ArcSDE, also
enhances performance of analytical oper-
ations by buffering input and output
queues. Often misunderstood, ArcSDE is
not a database unto itself. Rather, it is a
translator and “traffic cop” between a
third-party database (DB2, Informix,
Oracle, or SQL Server) and an ESRI
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Figure 2. The USGS seamless server Web site demonstrates that a local transect (2a) and corresponding elevation graph (2b) take the same time to process as
a national transect (2c) and its elevation graph (2d) — both using the same seamless DEM and imagery database.
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client application (ArcMap, ArcCatalog,
and so forth). ESRI’s approach relies on
the database (server) to store data, the
application (client) to store analysis code,
and ArcSDE to exchange data efficiently
between them. For any given data
exchange or stream between the database
and processing code, ArcSDE allocates
transport buffers on both the server and
client (see Figure 3). When the server is
responding to a client request for data,
ArcSDE fills the server’s transport buffer
before sending its resultantly large chunk
of data to the client. This strategy —
called either array buffering or ArcSDE
caching — reduces the number of
exchanges between client and server by
fetching and inserting data in larger
chunks. And fewer exchanges yield lower
“overhead” and consequently improve
performance.

Some question the value of databases
for raster data management. After all,
raster data don’t change the way vector
data do. Once they’re captured and recti-
fied, nobody edits digital orthophotos.
Why store them in an environment (the
database) designed specifically to handle
multi-user editing transactions? In addi-
tion to performance boosts over the file-
based systems mentioned earlier, there
are administrative advantages to putting
all of your data eggs into one database
basket.

For example, after investing consider-
able time to build a single large dataset
on some centralized machine, administra-
tors occasionally have to move it else-
where. This kind of operation — moving
large datasets between physical machines
— is the sort of problem that database
vendors (rather than spatial software
makers) compete with each other to
solve. Spatial data are not always at the
top of the big database vendors’ list of
features to support, but now and then,
spatial data get lucky and are carried
along by one of the competing solutions.
For instance, Microsoft’s SQL Server sup-
ports a capability called portable table-
spaces whereby administrators can dump
a database’s entire contents onto cheap

large-capacity storage hardware, and
then move that dumped tablespace to
another machine. Upon arrival, the
receiving SQL server database embraces
the new portable tablespace like a lost
child, and the job is done. Though a
fairly standard feature (by various names)
in all professional databases, SQL server’s
support for portable spatial tablespaces is
noteworthy.

Security is another good reason to con-
sider databases for raster storage — our
government’s concerns about homeland
security include sharp focus on protecting
potentially sensitive raster data. Storing
raster data in a database offers an addi-
tional security barrier to that of the file
system. Even if a cracker compromises
your organization’s outer defenses and
gains access to the command line of your
server’s operating system, he still has to
chisel past the security measures guarding
the database itself, which are independent
of the operating system.

Raster Masters’ Dreams
In 1968, science fiction novelist Philip K.
Dick asked, “Do androids dream of elec-
tric sheep?” Wondering the same of
ESRI’s raster dream team, I asked what
excites them most about the future of
raster data management.

Confident with their recent advances
in terabyte-size raster data management,
they are excited by the challenges of even
larger datasets. Willison elaborated, “At
last year’s ASPRS [American Society of
Photogrammetry and Remote Sensing]
conference, a speaker predicted that we
would soon be working on pedobytes of

imagery data, and the crowd gasped.
This year, ASPRS speakers talked about
breaking the exobyte barrier.” (At some
point, size really does matter!)

All are eyeing the Holy Grail of lossless
compression. For instance, JPEG image-
processing routines discard original data
to compress images more tightly. When
done well, the changes are undetectable
to human perception. The JPEG specifi-
cation refers to this strategy as lossy com-
pression because, once so processed, the
original data are lost. Some raster special-
ists believe that compression ratios of
2:1, 5:1, or 20:1 will be possible with
lossless (rather than lossy) compression.
Since smaller storage footprints result in
faster database extraction and process-
ing, it’s understandable why compression
is a hot topic.

The most compelling future vision
doesn’t pivot on the raster engineers’
delight in pushing size or performance
envelopes. Instead, what sent shivers
down my spine was Kopp’s description 
of how raster management technology
supports global research. Today’s raster
data management enables analysis and
visualization of a seamless sea surface-
temperature range for all of Earth’s
oceans over a two-year sequence. What
will that analysis tell us about climate
change or humanity’s choices for future
planetary stewardship? That’s the right
kind of dreaming. Dream on, raster 
masters! �

Figure 3. ESRI’s ArcSDE is translation software
between a database (server) and a mapping appli-
cation (client) that improves system performance
by reducing the number of client-server data
exchanges to a few large chunks. ESRI calls
ArcSDE’s caching strategy “transport buffers.”
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